顕微鏡画像の遠隔監視システム ~ガラス包有物の水素分析~

大和良広 筑波大学研究基盤総合センター(応用加速器部門) 〒305-8577 茨城県つくば市天王台 1-1-1

概要

応用加速器部門では、マイクロビームによる岩石 中のガラス包有物の水素濃度分析を行っている(図 1)。第2回筑波大学技術職員技術発表会に於いて 「地球科学試料中の水素分析のためのマイクロビー ム制御システム及び照射試料駆動制御システムの開 発^[1]」というタイトルで発表したシステムのうち、 試料の照射位置を決定するために必要な顕微鏡をリ モートで監視する装置について改良・改善を行った。

1. はじめに

これまで、ガラス包有物(図2)の観察やマイク ロビーム(図3)の形成のためのモニターは、アナ ログの CCD カメラを顕微鏡(図4)に接続し BNC ケーブルで測定室から制御室にビデオ信号として送 っていた。このため通常のテレビ画像と同じ 640× 480 ピクセルの解像度しか得られず、画像に外来ノイ ズの影響も受けやすかった。しかし、今までよりも 構造の複雑なガラス包有物を特定しマイクロビーム の照射位置に合わせることが必要になったため、照 明の高輝度 LED 化およびカメラのデジタル化を行っ た。これにより高照度・高解像度(1,024×768 ピク セル)の顕微鏡画像観察が可能となった。

図1. 水素分析方法の概略 陽子弾性散乱同時計測法とは、固体試料に 20MeVの陽子線を照射し、試料中の水素により 散乱された陽子と、同時にはじき飛ばされる試 料中の水素を同時検出して、ppm~wt.%の水素を 非破壊に定量する手法である.この手法では測定 試料を既知水素濃度の標準物質で挟んで同条件 で分析するため、両者の測定に関わる誤差を相

殺することができ、高い正確度の定量が可能.

図2. ガラス包有物(メルトインクルージョン) 酸性火山岩の石英斑晶中に取り込まれた初期のマグマ物質 火山岩の包有物の揮発性物質の分析によって、島弧マグマの発生と揮発性成分の関係、 地殻内部での水の挙動などの解明、ひいては火山噴火予知への貢献も期待される.

図3. マイクロビーム形成

通常の実験で使用される加速イオンビームの収束直径は φ 1~2 mm 程度である.

これをスリットや電磁石レンズで ø 10~100 µm 程度まで試料に合わせ小さくしぼる操作を行う.

図4 試料チャンバー・顕微鏡図面

2. 特殊な観察装置

本システムは、真空中を加速されたマイクロビー ムで試料の水素濃度を分析するため、通常の顕微鏡 と異なり非常に複雑な構造をしている。図4の様に 試料はXYZ に動作するステージ(移動機構)上にマ ウントされビームを自在な位置に照射するため地面 に対して垂直である。ところが高エネルギーのビー ムと同じ軸上に顕微鏡とカメラを置くことは不可能 なので顕微鏡は地面に対して水平に設置されている。 すなわち対物レンズと試料が90°ずれて設置されて おり45°のミラーによって遠くから観察する。さら に実体顕微鏡(Leica Microsystems MZ125)で14イン チモニター表示時700倍程度の倍率を要求するので 投影レンズ等が必要である。

この様な条件で鮮明かつ高解像度な画像を得るのは非常に難しい。

3. 照明の高輝度 LED 化

カメラの性能を調べるためたくさんのメーカーよ りデモ機をお借りして顕微鏡での試料画像のチェッ クを行った。その過程で画像の不鮮明さに後方照明 の照度の影響がかなり大きいことがわかったため、 従来のハロゲンライト (Leica Microsystems CLS 150XD) で 45° ミラーの反射光を使った照明から 「超高輝度白色 LED (日進電子工業(株) W3SP-28) + 集光レンズ」をマイクロビームと同じ光軸に設置し た照明に変更(図5)したところ、試料画像の鮮明 さが増した。

図5. 顕微鏡後方(試料透過光)照明の変更

4. CCD カメラのデジタル化

4.1 解像度の向上

本システムの導入まではアナログの CCD カメラを 使用してきた。最初に顕微鏡と同時に設置されたの は 1/2 インチ CCD の Sony DXC-200A であった。こ れを用いてしばらく実験してみたところ、最低被写 体照度と倍率が足りずビームトランスポートや包有 物の位置設定が難しかった。そのため、1/3 インチ CCD で最低被写体照度が 2 桁感度の高い Moswell Co., Ltd. MS-560A と交換した所、照度・倍率とも飛 躍的に改善した。このカメラを用いて数年は BNC ケ ーブルで測定室から制御室にビデオ信号として送っ た画像を、モニターテレビと PC のビデオキャプチャ ーボードを用いて観察・記録していた。

ところが、それまでの実験では比較的発見しやす い包有物(図6)ばかりを測定していたが、研究の 進展により複雑な包有物(図7)を特定し測定しな ければならなくなった。この条件をクリアするため には解像度の向上が必要であった。また、照度やゲ イン、ホワイトバランスなどの画質調整が必要なと き、アナログカメラは本体に付いているディップス イッチの設定が必要で実験中は現場に立ち入れない 我々の環境では非常に不便であった。

図6. 試料(宮城県苅田郡蔵王町円田土浮山D)

図7. 試料(山梨県中富町西島月見橋 3-2-A-A)

4.2 デモ機による評価と選定

4.1 の様な要求から顕微鏡用カメラの交換を検討 し、以下のような多数のデモ機を使用して価格・性 能の評価を行った。

Olympus DP12、浜松ホトニクス(株) C8484、(株) アートレイ Artcam-300MI, Artcam-200SH、(株) 日本 ローパー QImaging RETIGA EXi、Nikon DS5Mc-L1、 Sony XCD-X710CR, DFW-X710 で、価格性能比で最 終的に Sony DFW-X710 を選定した。

顕微鏡の対物レンズの分解能の仕様限界、試料の 傾きやミラーの角度なども少なからず観察映像の劣 化に影響がある点を考慮し、実際の試料チャンバー 顕微鏡にマウントした状態での評価が有効であった。

4.3 現場カメラ観察用 PC

測定室の試料チャンバー側近にも観察用モニター は必要で、現場で快適に動作し、リモート監視を行 っても問題のないパフォーマンスである PC を予算 範囲で選択した。PC とデジタル出力カラーカメラモ ジュール(4.2)のインタフェースには、観察・計測・ キャプチャソフトウェア (Media Cybernetics Inc. Image-Pro Express5.1)が対応している IEEE1394 (Technoscope Co., Ltd. PFW-46) を採用した。

これにより、カメラ本体を操作しなくてもソフト ウェアで照度やゲイン、ホワイトバランスなどをコ ントロールでき(図8)、マーキング、長さや面積 の計測などが可能となった。

図8. ソフトウェアによるカメラの画質調整

5. リモート監視

5.1 画像信号伝送方法の検討

1階にある測定室の水素分析用コース(ローカル) と2階にある制御室(リモート)(図9)は新しく ケーブルを張る場合の経路が約40mである。これま では既設のBNCケーブルを使用できたが、ローカル とリモートで顕微鏡画像を見たい場合PCが介在す るとどうしてもデジタル信号ケーブルが必要である。 そのため、CAT5 UTPケーブルで接続するUSB2 エ クステンダーや IEEE1394 光伝送リピーター、 IEEE1394 ロングケーブルなどを検討したが、ローカ ル・リモートの切換がうまくいかない可能性が高か ったため既設LAN 配線(100BASE-TX)を用いた方 法を検討した。

5.2 IP 対応リモート KVM

ローカルとリモートで同じ画面及びキーボード、 マウス操作ができれば良いだけなので、KVM (Keyboard/Video/Mouse switch) が遠隔で使えれば最 も簡単にリモート監視が実現できると考え(図10)、 既設 LAN 配線が利用できる KVM over IP ユニット (日本ラリタン・コンピュータ(株) LARA Express) を使用してみた。

ところが、通常のアプリケーション利用程度であ れば全く問題ないが、リアルタイム性を要求するビ デオ画像を表示するためにはフレームレートが低す ぎ、画像のリフレッシュノイズも酷かったため、顕 微鏡画像の遠隔監視には全く利用できなかった。

図9 ローカル・リモート位置関係 1階第1測定室0[°] コース試料チャンバーから 2階加速器制御室コントロール PC までは遠く、 現場の顕微鏡画像を高解像度かつ劣化無く送る にはデジタル化が必要。

図10. KVM over IP ユニットでの接続図

5.3 UltraVNC

IP 対応リモート KVM の性能が期待外れだったた め過去に遠隔制御用に使用経験のある UltraVNC¹ を使用して遠隔監視及びカメラコントロールを試し た。画像のリフレッシュノイズは無いものの動画の フレームレート²が 5 fps 程度で、試料照射位置の決 定には使用できるがマイクロビーム形成のためのリ アルタイムモニターとしては使えなかった。

5.4 リモートデスクトップ

水素分析実験のための顕微鏡モニターとしては UltraVNC のフレームレートでも不満があり、 Windows XP Professional に標準装備のリモートデス クトップを試した。結果は良好で、8 fps 程度のフレ ームレートが得られた。

5.5 ギガビット LAN による高速化

リモートデスクトップのフレームレートでもまだ、 マイクロビーム形成のためには利用者のストレスが 高かった。そこで、既設の情報コンセント1系統を 専用に使用し、さらに測定室や制御室内の足りない 部分には新規に STP ケーブルを敷設してローカル・ リモート間の通信をギガビットネットワーク化した (図11)。これにより、実効通信速度は3倍以上 になり、動画のフレームレートが 12 fps 程度まで向 上した。カメラ自身のフレームレートが Max. 15 fps なので概ね良好な結果と言える。

また、ネットワークの設定をジャンボフレームに 設定し速度の向上があるかテストしたが、ファイル 転送などのスループットは向上したものの動画のフ レームレートは変わらなかった。

今後さらなるフレームレートの向上ができるか IgScope や PacketiX Desktop VPN などのソフトウェ アでもテストする予定である。

顕微鏡カメラ DFW-X710 ギガビットLAN 計算機室 実効速度200Mbps ギガハブ経由 0° ⊐−ス ir 顕微鏡PC DELL GX620 **IEEE1394** 400Mbps AM室 情報コンセント Image-Pro 経由 EXPRESS Ver.5.1J でモニター ギガビットLAN & で コントロール リモート デスクトップ 2F コントロールPC **EPSON Direct** ギガLAN化で 64Mbps → 200Mbps に3倍以上速度向上 Endeavor Pro3300

水素分析顕微鏡モニターリモートシステム 2006

図11. ギガビットネットワーク化

「1F 測定室ローカル」から分析電磁石室(AM 室)情報コンセントまで(図9参照)と 計算機室ギガ対応スイッチングハブからコントロール PC までの間に CAT5e STP ケーブルをはり 顕微鏡画像を見やすくするためのフレームレートの向上ができた.

¹ http://kp774.com/soft/uvnc_jp/

² ここでのフレームレートは筆者の体感速度

6. 水素分析研究成果

本システムを使用した研究論文^[2]として、学会誌等 36、国際会議発表8、口頭発表11、学士論文5、 修士論文2が提出されている。 具体的な2例を以下に示す。

具体的な 2 例を以下に小9。

6.1 原爆放射線量再評価 DS02 のための 広島元安橋花崗岩の水素濃度測定

広島爆心直下の地でその姿をとどめていた元安橋 (図12)の花崗岩を水素分析し DS02の評価データ の1つとして分析結果を提供した。^[3-5]

図12. 現在保存されている当時の元安橋の欄干

花崗岩中の水素の分布は一様ではないので岩石の 薄片上で無作為に測定点を選び多数回の測定を行い 平均値を求めた。測定した花崗岩は U4-1 のラベルが あり、南北に抜いたコアサンプルの北側から4番目、 深さ6~8 cm、上方の部分である。この花崗岩サンプ ルから厚さ 0.2 mm の薄片を11枚作成し測定を行っ た(図13)。

測定結果は、0.29±0.11wt.% (H₂O) で Iwatani ら^[6] の、灼熱減量法およびカール・フィッシャー法によ り求めた水素濃度と誤差範囲内で一致した。

図13. 水素濃度分析のためにマウントした元安橋 の薄片試料を含むチャンバー内試料ステージ

6.2 ガラス包有物の水素濃度測定

国内外の様々な試料を計測してきた。以下にこれ まで測定した試料のリスト³を示す。

- 宮城県苅田郡蔵王町 円田 土浮山高温石英
- 茨城県日立市 <u>初崎</u> 奥日光流紋岩類(白亜紀)
- 富山県東礪波郡城端町 細尾峠 月長石流紋岩(臼中月長石流紋岩 24-25 Ma)
- 兵庫県多紀郡今田町 <u>立杭</u> 流紋岩(有馬層群 71-67 Ma)
- 静岡県田方郡修善寺町 柏久保 高温石英(白浜層群酸性凝灰岩 7-8 Ma)
- 秋田県雄勝郡雄勝町 <u>荒湯</u> 高温石英
- 滋賀県大津市藤尾町 小<u>別峠</u>
 石英斑岩(比叡花崗岩体を貫く岩脈 白亜紀)
- 鹿児島県鹿児島郡桜島町 <u>咲花平</u>
- 兵庫県多紀郡丹南町 <u>不来坂</u> 流紋岩(有馬層群 71-67 Ma)
- 奈良県宇陀郡室生村 <u>室生</u>
 流紋岩質溶結凝灰岩 (7-10 Ma)
- 長野県更埴市 <u>稲荷山</u> 斜長石流紋岩(小川層下部 7.5 Ma)
- 神奈川県津久井郡津久井町 <u>早戸川</u> 玄武岩(15-16 Ma)
- 山梨県南巨摩郡南部町 <u>上佐野</u> 玄武岩質安山岩(5-6 Ma)
- 山梨県南巨摩郡身延町 <u>光子沢</u> クロム透輝石^[7]

他多数。今後、これら試料の詳細な測定データ解 析を進める。

一例として、宮城県蔵王町円田 ~5万年の蔵王火 山噴出物の石英斑晶(無色及び茶色透明均質・200 µm 厚の両面研磨片)の分析結果を示す(図14)。

単結晶内の包有物の水濃度

複数包有物の濃度:ほぼ一定 (1σ=7%以内)

図14. 宮城県蔵王町円田石英試料中の ガラス包有物の水換算濃度測定結果

本システムを用いることにより、析出結晶を含む 不均質包有物の水素濃度も決定が可能で、これはそ の他(赤外吸光分析(FTIR)など)の分析手法では 不可能である。

³ サンプル収集当時の旧住所での表示

7. まとめ

照明の高輝度 LED 化とカメラ及び信号伝送方式の 変更によって遠く離れた測定室の実体顕微鏡を制御 室で操作し高解像度で観察するシステムを構築した。

アナログカメラ画像では輪郭などの特定が難しか った複雑なガラス包有物が本システムを使用するこ とによりかなり見やすい環境となった。

このことにより、測定する包有物の照射位置設定 時間が短縮し実験時間を有効に使うことが可能で多 数の包有物の発見時間短縮に貢献できた。

謝辞

本システムの資源は、生命環境科学研究科 地球進 化科学専攻 黒澤正紀 講師の科学研究費補助金より 支出させていただきました。黒澤講師にはサンプル の収集から薄片試料作製まで一手に引き受けていた だき地球科学的見地から様々なご助言を頂きました。

研究基盤総合センター応用加速器部門 石井聡氏 には、照明の高輝度 LED 化を一手に引き受けていた だき、観察テストにも協力いただきました。

また、計測・解析を中心に当分析システムを統括 的に担当されている数理物質科学研究科 物理学専 攻 小松原哲郎 講師、ビームライン全般・マイクロ ビーム形成を中心に担当されている数理物質科学研 究科 物理学専攻 笹公和 講師に様々なご協力を頂 きました。

この場をお借りして感謝の意を表します。

参考文献

[1] 大和良広.地球科学試料中の水素分析のためのマイク ロビーム制御システム及び照射試料駆動制御システ ムの開発, 第2回筑波大学技術職員技術発表会講演予 稿集 (2003) 36-43.

http://www.tech.tsukuba.ac.jp/2002/abstract/05yamato.pdf [2] 古野興平. 共鳴原子核反応法による岩石・鉱物中の水

- 素分析法の研究課題番号:12304032,平成12年度~平 成 14 年度 科学研究費補助金 基盤研究(A)(2) 研究成 果報告書 (2003).
- [3] 小松原哲郎、笹公和、石井聡、大和良広、宮川一尚、 佐藤健一郎、黒澤正紀. 陽子弾性散乱同時計数法によ る花崗岩の水素分析,広島・長崎原爆放射線量新評価 システム DS02 に関する専門研究会報告書 (2005) 120-123
- 小松原哲郎、笹公和、大島弘行、木村博美、田島義 [4] 高橋努、石井聡、大和良広、黒澤正紀、古野興平. 第 10章中性子測定と計算値に寄与する因子、E。花崗 「広島および長崎における原子爆 岩中の水素含有量 弾放射線被曝線量の再評価」線量評価システム 2002、 DS02,2006年財団法人 放射線影響研究所.
- T. Komatsubara, K. Sasa, H. Ohshima, H. Kimura, Y. Tajima, T. Takahashi, S. Ishii, Y. Yamato, M. Kurosawa, [5] K. Furuno, Hydrogen Content in Granite, "Reassessment of the Atomic Bomb Radiation Dosimetry for Hiroshima and Nagasaki-Dosimetry System 2002", Report of the Joint US-Japan Working Group, Chapter 10, Part E, pp.750-754, Radiation Effects Research Foundation (2005).
- H. Hasai, K. Iwatani, K. Shizuma, M. Hoshi, K. Yokoro, S. [6] Sawada, T. Kosako, H. Morishima, Health Phys. 53 (1987)
- 黒澤正紀、宮川一尚、小松原哲郎、佐藤健一郎、笹公 [7] 和、石井聡、大和良広、小林洋二、安間了. 伊豆一小 笠原弧衝突境界付近に発達するクロム透輝石を含む 岩脈の水濃度,月刊地球 27 (2005) 519-524.
- [8] T. Komatsubara, K. Sasa, K. Okumoto, S. Ishii, Y. Yamato, K. Satou, K. Furuno, M. Kurosawa, Development of ERCS hydrogen analysis for melt inclusionsin erupted magmatic
- hydrogen analysis for melt inclusionsin erupted magmatic samples, N.I.M. B 251 (2006) 237-245.
 [9] K. Sasa, K. Furuno, Y. Yamato, H. Ohshima, S. Ishii T. Komatsubara, M. Kurosawa, The Tsukuba high-energy nuclear microprobe for hydrogen analysis of mineral samples, Nucl. Instr. and Meth. B210 (2003) 48-53.
 [10] K. Furuno, T. Komatsubara, K. Sasa, H. Ohshima, Y. Yamato, S. Ishii, H. Kimura, M. Kurosawa, Measurement of hydrogen concentration in thick mineral or rock samples.
- of hydrogen concentration in thick mineral or rock samples, Nucl. Instr. and Meth. B210 (2003) 459-463.